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Abstract Vibration in the microgravity environment
is with the characteristics of low frequency, small
amplitude, and randomness. Control method of an
active vibration isolation system with parallel mech-
anism applied to space application, which is effective
for disturbance suppression, is proposed. The dynam-
ics model of active vibration isolation system with
payload is represented via Kane’s method, thereafter
the description in state-space linearization is intro-
duced. System properties and step responses of the
systems in open loop are evaluated in detail. Control-
lability and observability of the system are checked
by state-space equations of the system. The state
feedback decoupling with double-loop proportional-
integral-derivative (PID) control method is adopted as
the system controller to design the decoupling matrix
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and the PID controller. For improving the properties of
the system, a control system with H-infinity method is
also designed and evaluated. Finally, various types of
simulation results are demonstrated to verify the effec-
tiveness of the active vibration damping system pro-
posed.

Keywords Active vibration isolation · Space station ·
Control method · PID control · H∞ control

1 Introduction

It is an effective way to take the advantages of the
microgravity environment for making scientific experi-
ments in the space station. However, due to the various
types of sources producing vibration, various exper-
imental conditions in the space station in terms of
the varying acceleration are not ideal for scientific
research. Taking the International Space Station (ISS)
for example, its vibration sources are divided into three
categories according to the frequency [1–5]: (a) low
frequency less than 10−3 Hz, which is caused by grav-
ity and atmospheric drag of orbital space; (b) high
frequency larger than 1 Hz produced by continuing
sources such as the vibrations of pumps, compressors,
motors, and fans, as well as the movement of the crew
and propeller, which appears as the transient source;
(c) medium frequency between 10−3 and 1 Hz, which
is caused by walking of the crew, propeller movement,
etc. Sources producing vibration interference in space
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station have the features of low frequency, small ampli-
tude, and randomness. Thus, designing a damping sys-
tem, which is effective for isolating the low-frequency
interference sources in space station, is absolutely cru-
cial to make space experiment accurately.

As required by experimental conditions in space sta-
tion with microgravity environment, especially for that
of the acceleration, a novel damping system should
be designed. At present, there are four major inter-
national damping systems for space science experi-
ments, named Suppression of Transient Acceleration
by Levitation (STABLE), Active Rack Isolation Sys-
tem (ARIS), Microgravity Vibration Isolation Mount
(MIM), and Glove box Integrated Microgravity Isola-
tion Technology (G-LIMIT). Taking account for the
size of the load, the damping system with space appli-
cation is divided into three levels: payload level, the
sub-cabinet level, and the whole cabinet level. STA-
BLE and G-LIMIT are both payload level damping
systems. STABLE utilized six independent controlled
Lorentz coils to reduce vibration for suspending loads,
while G-LIMIT used the glove box to conduct sci-
entific experiments. MIM is damping system for the
sub-cabinet level, which utilized eight Lorentz drives
that are centralized control to resist vibration distur-
bances. Thus, a variety of scientific experiments can
be performed [1–4]. ARIS is the damping system for
the entire cabinet level, which uses sensors to measure
acceleration signals of the experimental cabinet and
controls the eight swing-type voice coil motors pro-
viding the driving force. With this solution, the whole
experimental cabinet is isolated from low-frequency
interference [4–10].

There are many key technologies of designing the
parallel mode active damping system [11]: (a) design
and optimize the system mechanism. Select the appro-
priate drive and reduce the direction of multi-freedom
vibration interference by providing the driving force
through the rational layout; (b) system design and lay-
out of key components, such as flexure hinge design
and distributing the sensors; and (c) design and opti-
mize the control system.

Active damping system often uses double-loop con-
trol, which is an acceleration feedback and position
feedback and is a multi-input multi-output system. The
design of control system is divided into traditional con-
trol methods and modern control methods.

The main content of this paper is as follows: First of
all, Kane’s method is used to establish dynamics model

of spatial cabinet parallel active isolation system and
dynamics model of space station science experimen-
tal load; and the model is linearized to obtain the form
of state-space model. Open-loop characteristics of the
system are studied; and step response of the open-loop
system is analyzed; then through systematic state-space
equations, we analyzed the controllability and observ-
ability of the system. The methods of proportional-
integral-derivative (PID) and H infinity (H∞) are used
to design control system. At last, the simulation exper-
iments verify the damping effect of the designed active
vibration isolation system.

2 Configuration of active isolation system
for microgravity scientific research platform

The layout of the sensitive experiment payload in space
station for scientific research is illustrated in Fig. 1.
According to the isolation and damping mechanism of
the International Space Station (ISS) and the require-
ments for attenuation of vibration, a novel active vibra-
tion isolation and damping system with parallel dis-
tributed isolators is designed, which is shown in Fig. 2.
The main features of the proposed system are as fol-
lowing. First, it consists of three component elements,
including the cabin of space station, the platform for
scientific research, and the actuators which are taken
as the isolators. Moreover, the platform for scientific
research is mounted on cabin of the space station iso-
lated via eight voice coil motors in parallel mechanisms
through which the systematic rigidity and reliability are
increased. Finally, there are no special requirements of
the characteristics for voice coil motor, and the flexure

Fig. 1 Layout of the microgravity scientific research rack in the
space station section
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Fig. 2 The parallel active vibration isolation system of space
station scientific experimental rack

hinge is designed separately with the motor for system
assembling considerations.

According to the formula of Kutazbach–Grübler, the
degree of freedom (DOF) of the mechanism illustrated
is derived from

M = 6 (n − g − 1) +
g∑

i=1

fi = 6, (1)

where M represents the DOF and n is the number of the
elements. The number of kinematic pairs is g, while fi

represents the relative DOF.
Various types of actuators are eligible for active

vibration isolation system, such as piezoelectric
ceramic (PZT), magnetostrictive materials, hydraulic
cylinders, voice coil motor, etc. However, the perfor-
mance of active vibration isolation system is highly
relied on that of the driving components, thus the actu-
ator is a critical component in an active vibration isola-
tion system. Voice coil motor consists of coil elements
and magnet elements. Considering different types of
output, it is divided into two categories: the linear type
and the sway type. Compared with other types of actu-
ators, there are a lot of advantages of a voice coil motor,
such as simplified structure, small size, larger acceler-
ation, fast response, and high repeated resolution. Due
to the proportional relation between the output of force
and the input of current, it is effective for requirements
of controlling the acceleration.

(b) space 
station 
cabin

(a) space station 
science 

experiment 
platform

(c) drive

(d) slider

(e) lever

Fi

Si

Ai

f1
i

f2
i

(a1
i)

(a2
i)

s1
i (p1

i)

s2
i (p2

i)

q1
i q2

i q3
i

q4
i

q5
i q6

i

Pi

Fig. 3 The reference coordinate system

As the scientific research platform of the space sta-
tion is sensitive for vibrations, it requires the actuator
to output larger force rapidly with both good perfor-
mance and robustness, besides a smaller size. There-
fore, the proposed active isolation system utilizes the
linear voice coil motors as the actuators, which are dis-
tributed in parallel.

3 Dynamics modeling of the active vibration
isolation system

3.1 Coordinate system description for active isolation
platform

Model of the active isolation system for microgravity
scientific research is shown in Fig. 3, which consists
of the following components: (a) microgravity scien-
tific research platform, (b) cabin of the space station,
and (c) several actuators. In this design, a single-axis
actuator includes the slider (d) and the static lever (e).
The slider is mounted on the microgravity scientific
research platform via a 3-DOF flexure hinge, while the
static lever is fixed on the cabin of the station through
a 2-DOF flexure hinge. Thus, the slider could move
linearly with respect to the static lever.

As illustrated in the model, the flexure hinge is sim-
plified as spring with the mass neglected. The cabin of
the space station is taken as the base, and the platform
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for scientific research has 6 degrees of freedom which
are driven by actuators. The primary position of the
platform is defined as the position when all the springs
are relaxed without any pressures. The center of mass
of the space station cabin, the static lever, the slider, and
the science experiment platform are represented by S∗,
Pi*, Ai*, and Fi*, respectively. The lengths of slider and
static lever are li

1 and li
2. Connection point between sta-

tic lever and the cabin of space station is Si , while that
between slider and scientific experimental platform is
Fi . The points of Lorentz force generated by the coil
are Ai . The superscript * denotes the center of mass
of each rigid elements, and superscript and subscript i
denote the i-th actuator.

According to the original point Fi (i = 1, . . . , 8),

eight groups of reference coordinate system
�

Fi are
established on scientific experimental platform and the
reference coordinate system is determined by the unit
vector �f i

j ( j = 1, 2, 3). When the scientific experi-
mental platform is at the initial position as shown in
Fig. 3; �f i

2 along the slider is perpendicular to the sur-
face of the platform and �f i

1 is perpendicular to �f i
2 ,

while �f i
1 is parallel to the side of scientific experimental

platform. Direction of �f i
3 was determined by the right-

hand rule �f i
1 × �f i

2 , and it is perpendicular to side of
the scientific experimental platform and pointing to the
external.

Correspondingly, to the original point Fi , eight

groups of reference coordinate systems
�

Ai on slider
are also established and the position of reference
coordinate system is determined by the unit vector
�ai

j ( j = 1, 2, 3). Meanwhile, eight groups of reference

coordinate systems
�

Pi on lever are shown in Fig. 3.
The direction of reference coordinate system is deter-
mined by the unit vector �pi

j ( j = 1, 2, 3). After that,

eight groups of reference coordinate system
�

Si on the
space station cabin are illustrated and the direction of
reference coordinate system is determined by the unit
vector �si

j ( j = 1, 2, 3). While the scientific experiment

platform is at the initial position, �ai
j , �pi

j , �si
j , and �f i

j
have the same position. Finally, to the original point
F∗ of science experiment platform’s initial position,
establishing static coordinate system and the position
of coordinate system are determined by the unit vector
�f j ( j = 1, 2, 3), where �f1, �f2, and �f3 point to the

front, top, and side of platform for scientific experi-
ments, respectively.

The rotations between �ai
j and �f i

j through �f i
1 , �f i

2 ,

and �f i
3 are defined as qi

1, qi
2, and qi

3, respectively.
The transformations qi

4 between �pi
j and �ai

j are defined,

while the rotation qi
5 and qi

6 through �si
1 and �si

3 between
�si

j and �pi
j are also shown in Fig. 3.

By defining the sine and cosine variants of qi
j as ci

j

and si
j , respectively, the rotations between

�

Ai and
�

Fi

as well as between
�

Pi and
�

Si are solved as:

R f
a =

⎡

⎢⎣

ci
3ci

2 ci
3si

2si
1 − si

3ci
2 ci

3si
2ci

1 + si
3si

1

si
3ci

2 si
3si

2si
1 + ci

3ci
1 si

3si
2ci

1 − ci
3si

1

−si
2 ci

2si
1 ci

2ci
1

⎤

⎥⎦ , (2)

Rs
p =

⎡

⎢⎣

ci
6 −ci

5si
6 si

5si
6

si
6 ci

5ci
6 −si

5ci
6

0 si
5 ci

5

⎤

⎥⎦ . (3)

3.2 Assumptions for simplified model

By attenuation of the amplitude of system vibration,
active vibration isolation and damping system could
keep the platform stable around the expected position.
Due to the performance and characteristics of the active
isolation system via parallel distributed isolators, sev-
eral assumptions are conducted for this system as fol-
lows:

(a) All the transformations qi
j and generalized veloci-

ties ui
j are rather small;

(b) Nonlinear differential equation is approximately
represented by the first-order differential equation;

(c) The angular velocities ωS and the angular acceler-
ation αS are neglected, while those of linear move-
ments are rather small.

3.3 Generalized velocity, partial velocity,
and acceleration

There are totally 48 variants of qi
j ( j = 1, . . . , 6; i =

1, . . . , 8), which include 42 representing angular prop-
erties and the other 6 representing variants for trans-
formation, defined as generalized coordinates of the
dynamics for S̃.

The first-order time derivative of generalized coordi-
nate system ui

j ( j = 1, . . . , 6; i = 1, . . . , 8) is given by

ui
j = q̇i

j , (4)
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while u1
j ( j = 1, . . . , 6) is selected as the independent

generalized velocity.
Assuming that �r AB is the vector from A pointing to

B, vectors in the proposed system are as follows:

�r Si Pi
∗ = pi

2 �pi
2, (5)

�r Ai
∗ Fi = ai

2�ai
2, (6)

�r P∗
i A∗

i = pi
2 �pi

2 + qi
4 �pi

2 + ai
2�ai

2, (7)

�r Fi F∗ = f i
1

�f i
1 + f i

2
�f i
2 + f i

3
�f i
3 , (8)

where f i
1 , f i

2 , and f i
3 are correspondingly the projec-

tions of �f i
1 , �f i

2 , and �f i
3 , which represent the distances

from Fi to the center of mass of the scientific platform
F∗.

Velocity of the center of mass can be derived by time
derivatives of the vectors of position. Thus, based on the
assumptions aforementioned, the relations sin qi = qi

and cos qi = 1 existed. After omitting the high-order
minimum, the linear velocities are derived as:

Si
l �vP∗

i = pi
2

(
ui

6�si
l − ui

5�si
3

)
, (9)

Si
l �vA∗

i = ui
4�si

2 − ui
5

(
ai

2 + li
2

)
�si
3

+ui
6

(
ai

2 + li
2

)
�si
1, (10)

S1
l �vF∗ = u1

1

(
− f 1

3 �s1
2 + f 1

2 �s1
3

)

+u1
2

(
f 1
3 �s1

1 − f 1
1 �s1

3

)

+u1
3

(
− f 1

2 �s1
1 + f 1

1 �s1
2

)

+u1
4�s1

2 + u1
5

[
f 1
3 �s1

2 −
(

f 1
2 + l1

1 + l1
2

)
�s1
3

]

+u1
6

[(
f 1
2 + l1

1 + 11
2

)
�s1
1 − f 1

1 �s1
2

]
. (11)

Let f 1
2 + l1

1 + l1
2 = h1; the equation above is trans-

formed as

S1
l �vF∗ = u1

1

(
− f 1

3 �s1
2 + f 1

2 �s1
3

)

+u1
2

(
f 1
3 �s1

1 − f 1
1 �s1

3

)

+u1
3

(
− f 1

2 �s1
1 + f 1

1 �s1
2

)
(12)

+u1
4�s1

2 + u1
5

(
f 1
3 �s1

2 − h1�s1
3

)

+u1
6

(
h1�s1

1 − f 1
1 �s1

2

)
.

Moreover, the linearized accelerations can be solved
by the time derivatives of velocity of rigid body after
linearization.
Si
l �a P∗

i = pi
2

(
u̇i

6�si
1 − u̇i

5�si
3

)
, (13)

Si
l �a A∗

i = u̇i
4�si

2 − u̇i
5

(
ai

2 + li
2

)
�si
3

+u̇i
6

(
ai

2 + li
2

)
�si
1, (14)

S1
l �aF∗ = u̇1

1

(
− f 1

3 �s1
2 + f 1

2 �s1
3

)

+u̇1
2

(
f 1
3 �s1

1 − f 1
1 �s1

3

)

+u̇1
3

(
− f 1

2 �s1
1 + f 1

1 �s1
2

)

+u̇1
4�s1

2 + u̇1
5

(
f 1
3 �s1

2 − h1�s1
3

)

+u̇1
6

(
h1�s1

1 − f 1
1 �s1

2

)
. (15)

Then, the partial velocities linearizations are obtai-
ned as follows.

(a) The linearization partial velocity of the static lever
is

Si
l �vP∗

i
r = ∂

Si
l �vP∗

i

∂ui
r

(r = 1, . . . , 6). (16)

(b) The linearization partial velocity of the slider is

Si
l �vA∗

i
r = ∂

Si
l �vA∗

i

∂ui
r

(r = 1, . . . , 6) . (17)

(c) The linearization partial velocity of scientific plat-
form is

S1
l �vF∗

r = ∂
S1
l �vF∗

∂ui
r

(r = 1, . . . , 6) . (18)

Define
�

Mi and
�

Ni as the coordinating system during the

relative rotation between
�

Fi and
�

Ai ;
�

Ki is that between
�

Pi and
�

Si . Thus, the generalized angular velocities are
Fi �ωMi = ui

1
�f i
1 , (19)

Mi �ωNi = ui
2 �mi

2, (20)
Ni �ωAi = ui

3�ni
3, (21)

Pi �ωAi = 0, (22)
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Ki �ωPi = ui
6
�ki

3 (23)
Si �ωKi = ui

5�si
1. (24)

Then, the angular velocity of the rigid is obtained
by superposition principle:
Si �ωPi = ui

5�si
1 + ui

6
�ki

3, (25)

Si �ωAi = ui
5�si

1 + ui
6
�ki

3, (26)

S1 �ωF = u1
5�s1

1 + u1
6
�k1

3 − u1
1

�f 1
1 − u1

2 �m1
2 − u1

3�n1
3. (27)

The angular accelerations of rigid elements are
derived by the time derivatives of angular velocities
after linearization, which are obtained as follows:
Si �αPi = u̇i

5�si
1 + u̇i

6
�ki

3, (28)

Si �αAi = u̇i
5�si

1 + u̇i
6
�ki

3, (29)

S1 �αF = u̇1
5�s1

1 + u̇1
6
�k1

3 − u̇1
1

�f 1
1 − u̇1

2 �m1
2 − u̇1

3�n1
3. (30)

Then, the partial angular velocities after lineariza-
tion are obtained as follows.

(a) The partial angular velocity of the static lever after
linearization is

Si
l �ωPi

r = ∂
Si
l �ωPi

∂ui
r

(r = 1, . . . , 6) . (31)

(b) The partial angular velocity of the slider after lin-
earization is

Si
l �ωAi

r = ∂
Si
l �ωAi

∂ui
r

(r = 1, . . . , 6) . (32)

(c) The partial angular velocity of the scientific plat-
form after linearization is

S1
l �ωF

r = ∂
S1
l �ωF

∂u1
r

(r = 1, . . . , 6) . (33)

3.4 Generalized active force and generalized inertia
force

The main disturbance is the force and moment imposed
on the scientific platform directly and accompanied by
the moment via deformation of flexure hinge, which is
from the joint of 3-DOF flexure hinge aforementioned.
The resultant moment of all the eight joints is

�M F =
8∑

i=1

(
ki

1qi
1

�f i
1 + ki

2qi
2 �mi

2 + ki
3qi

3�ni
3

)
. (34)

The force and moment of disturbances imposed
directly on the centroid of mass of science platform
will be defined as �F D and �M D , repectively.

The generalized active force for generalized velocity
of the i-th rigid body is:

l QF
r = S1

l �vF∗
r · �F D + S1

l �ωF
r ·

( �M D + �M F
)

. (35)

Force and moment imposed on slider include the
pushing force and deforming moments from flexure
hinge.

The pushing force imposed on position Ai is defined
as �FCi , where c is the ratio of damping.

�FCi =
(

FCi − cui
4

)
�ai

2. (36)

Let �M Fi be the deforming moment for the i-th slider,
which can be derived as:

− �M Fi = −
(

ki
1qi

1
�f i
1 + ki

2qi
2 �mi

2 + ki
3qi

3�ni
3

)
. (37)

Thus, the generalized active force of generalized
velocity for the r -th slider is represented as

l Q Ai
r = Si

l �vA∗
i

r · �FCi + Si
l �ωAi

r ·
(
− �M Fi

)
. (38)

As aforementioned, forces and moments imposed
on static lever include pushing force of the voice
coil motor and moment of flexure hinge deformation.
Define that �M Si represents the resultant moment, which
is derived by

�M Si = ki
5qi

5�si
1 + ki

6qi
6
�ki

3. (39)

The generalized active force for the generalized
velocity of r -th rigid body is:

l Q Pi
r = Si

l �vP∗
i

r ·
(
− �FCi

)
+ Si

l �ωPi
r · �M Si . (40)

Define m F , m Ai , and m Pi as the masses of scientific
platform, the slider, and the static lever, respectively.
Moreover, their inertia moments are JF , JAi , and JPi .

The generalized inertia force according to the r -th
generalized velocity of the scientific platform is
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(
l Q∗

r

)F = S1
l �vF∗

r ·
[
−m F

(
S1
l �aF∗ + �aS

)]

+S1
l �ωF

r ·
[
−JF

S1 �αF −S1 �ωF ×
(

JF
S1 �ωF

)]
.

(41)

Then, the generalized inertia forces according to the
r -th generalized velocities of the slider and the static
lever are
(

l Q∗
r

)Ai = Si
l �vA∗

i
r ·

[
−m Ai

(
Si
l �a A∗

i + �aS
)]

+Si
l �ωAi

r ·
[
−JAi

Si �αAi − Si �ωAi ×
(

JAi
Si �ωAi

)]
,

(42)
(

l Q∗
r

)Pi = Si
l �vP∗

i
r ·

[
−m Pi

(
Si
l �a P∗

i + �aS
)]

+Si
l �ωPi

r ·
[
−JPi

Si �αPi − Si �ωPi ×
(

JPi
Si �ωPi

)]
.

(43)

3.5 Dynamics equations

There are totally 48 kinematic equations, each of which
is in accordance with a coordinate system as:

ui
j = q̇i

j ( j = 1, . . . , 6; i = 1, . . . , 8) . (44)

Moreover, there are 6 equations of dynamics, each
one is in accordance with a generalized velocity lin-
earization independence.

With the analysis of the dynamics system for S̃,
which includes 17 rigid bodies in all, the generalized
active force is:

Fr = l QF
r +

8∑

i=1

l Q Ai
r +

8∑

i=1

l Q Pi
r . (45)

Then, the generalized inertia force is:

F∗
r = (

l Q∗
r

)F +
8∑

i=1

(
l Q∗

r

)Ai +
8∑

i=1

(
l Q∗

r

)Pi . (46)

As the dependent generalized velocity is represented
by a linear combination of the generalized velocities
with linear independence,

ui
j =

6∑

j=1

Ar j u
1
j + Br

× (i = 2, . . . , 8; j = 1, . . . , 6; r = 7, . . . , 48) .

(47)

With the same method, the generalized active force
and the generalized inertia force are as follows:

F̃j = Fj +
48∑

r=7

Ar j Fj ( j = 1, . . . , 6) , (48)

F̃∗
j = F∗

j +
48∑

r=7

Ar j F∗
j ( j = 1, . . . , 6) . (49)

Based on Kane’s dynamic equation:

F̃j + F̃∗
j = 0 ( j = 1, . . . , 6) (50)

According to Kane’s method, the kinetic model of
the system can be written in the following state-space
form [4,8]

⎡

⎣
I O O
O I O
O O M

⎤

⎦

︸ ︷︷ ︸
P

⎧
⎪⎨

⎪⎩

�̇q I

�̇q D

�̇uI

⎫
⎪⎬

⎪⎭
︸ ︷︷ ︸

�̇x

=
⎡

⎣
O O I
O O N
Ki Kd C

⎤

⎦

︸ ︷︷ ︸
A

⎧
⎨

⎩

�q I

�q D

�uI

⎫
⎬

⎭
︸ ︷︷ ︸

�x

+
⎡

⎣
O
O
B

⎤

⎦
{ �f

}
+
⎡

⎣
O
O
D

⎤

⎦
{ �d
}

.

(51)

In (51), �x, �f , and �d represent the status, the inputs,
and the disturbance, respectively. I and O are unit
matrix and zero matrix, respectively. P, A and D are
definite matrices. B is the linear combination of the
state quantity, and B is time-varying matrix.

State variables consist of 48 generalized coordinates
�x and 6 independent generalized velocities �uI , as

�q I = [
q1

1 q1
2 q1

3 q1
4 q1

5 q1
6

]T
, (52)

where �q I is a 6 × 1 matrix, which represents 6 gen-
eralized coordinates of the actuator i , which are five
rotations between two flexure hinge and a displacement
generated in sliding pair.

�q D = [
qi

1 qi
2 qi

3 qi
4 qi

5 qi
6

]T
, (i = 2, . . . , 8) , (53)

where �q D is a 42 × 1 matrix, and it represents all the
rotations and displacements of actuators 2 to 8.

�uI = [
u1

1 u1
2 u1

3 u1
4 u1

5 u1
6

]T
, (54)

where �uI is a 6×1 matrix, which is the first-order deriv-
ative of the generalized coordinate system for actuator
i .

Input variable �f is a 8 × 1 matrix, which repre-
sents the driving force of eight actuators. Force is acted
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between the slide and the static lever. Disturbance vari-
able �d is a 6×1 matrix, which represents 3 disturbance
forces and 3 disturbances torques, respectively. Distur-
bance force acts on the centroid position of the experi-
mental platform.

N is a 42 × 6 definite matrix, which is composed
of the geometric parameters of the system. Twenty-one
equations represent that it should be the same on values
of scientific experimental platform’s centroid velocity
in different coordinate systems. Another 21 equations
represent that it should be the same on values of scien-
tific experimental platform’s angular velocity in differ-
ent coordinate systems.

S1
l �vF∗ = Si

l �vF∗
(i = 2, . . . , 8) , (55)

S1
l �ωF = Si

l �ωF (i = 2, . . . , 8) (56)

M is a 6 × 6 matrix, composed of quality and inertia
of scientific experimental platform, eight sliders, and
eight levers, which is a definite matrix.

Ki and Kd are stiffness matrices, composed of stiff-
ness of 16 flexible hinges, which are definite matrices.

4 Checking of controllability and observability

In control theory, both controllability and observability
are two critical properties for a control system, and the
controllability plays a crucial role in control problems,
such as stabilization of unstable system by feedback,
while observability measures how well internal states
of a system can be inferred by knowledge of its external
outputs.

Considering the model proposed, the state-space
equation is given by

{
ẋ = Ax + B1ω + B2u
y = Cx + D1ω + D2u

, (57)

where x is a 12 × 1 state vector, which equals to[
q I u I

]T
, y is a 12 × 1 output vector, which equals

to
[

r F∗
θ F∗

aF∗
αF∗ ]T

.
When the payload of the system is at balance posi-

tion and at initial time, as y = O12×1; r F∗
and θ F∗

are
the shift and angle of the payload with respect to the
initial position.

Considering that u = [B f ] is the 6 × 1 input vector
and ω = [d] is the 6 × 1 disturbance vector, we can
derive

A =
[

O6×6 I6×6

− Ki +Kd N
M 6×6 − C

M 6×6

]

12×12

, (58)

B1 =
[

O6×6
− D

M 6×6

]

12×6

, (59)

B2 =
[

O6×6
− I

M 6×6

]

12×6

, (60)

y =

⎡

⎢⎢⎢⎢⎢⎢⎣

(
S1
l �vF∗

1 · · · S1
l �vF∗

6

)
O(

S1
l �ωF

1 · · · S1
l �ωF

6

)
O

O
(

S1
l �vF∗

1 · · · S1
l �vF∗

6

)

O
(

S1
l �ωF

1 · · · S1
l �ωF

6

)

⎤

⎥⎥⎥⎥⎥⎥⎦

12×12

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
...

q6
u̇1
...

u̇6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

F O
O F

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
...

q6
u̇1
...

u̇6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (61)

C =
[

K6×6 O6×6

− F(Ki +Kd N )
M 6×6 − FC

M 6×6

]

12×12

, (62)

D1 =
[

O6×6
− F D

M 6×6

]

12×6

, (63)

D2 =
[

O6×6
− F

M 6×6

]

6×6

. (64)

The controllability matrix of the system is given by:

Uc = [
B2 AB2 · · · A11 B2

]
. (65)

The observability matrix of the system is given by:

Uo = [
C C A · · · C A11

]T
. (66)

The system is controllable and observable if the con-
trollability and observability matrices have full rank.
Thus, those of the system proposed are calculated as

rank(Uc) = rank(x) = 12,

rank(Uo) = rank(x) = 12.

Based on the analysis method aforementioned and the
results above, there is sufficient evidence to draw the
conclusions that the system proposed is controllable
and observable.
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Fig. 4 A PID control block
diagram
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dx=Ax+Bu2

In2
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In2
Out1

decoupling

Step1
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Displacement PID
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Constant8
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Constant2

Add2

Add1

Add

In1Out1

Acceleration PID

5 PID control and simulation

Referring to the control methods introduced in [16,17],
the control diagram of the proposed system is shown in
Fig. 4, which includes both open-loop and closed-loop
strategies. The controller is composed of the feedback
decoupled controller and the double-loop feedback PID
controller including both position and acceleration. The
input of open-loop system is disturbance force, while
the voice coil motor will not work. The inputs of closed-
loop system are disturbance force and the acting force
controlled by feedback.

Each feedback of acceleration and position con-
structs an independent PID controller. After decoupled,
each controller is designed independently with classi-
cal control methods for attenuating the disturbance of
single DOF.

Decoupling controller is shown as Fig. 5, which
includes decoupling matrix of mass M∗, decoupling
matrix of stiffness K ∗, and acting force distribution
matrix B∗. Here,

M∗ = M, B∗ B = I, K ∗ − (Ki + Kd N ) = K ′, (67)

where K ′ is the diagonal elements in matrix Ki +Kd N .

1

Out1

u*K

Stiffness 
decoupling

matrices

u*K

Mass 
decoupling

matrices

u*K

Driving force
 distribution

Add3

2

In2

1

In1

Fig. 5 A decoupled controller

The responses for unit step disturbance in six
degrees of freedom are shown in Figs. 6 and 7. From
the simulation results in the figures, it is noticed that
there is a large vibration with open-loop controller in
the form of acceleration and displacement of centroid.
The result of acceleration and angular of load’s centroid
of the closed-loop system are shown in Fig. 8, while the
displacement and angle of payload are shown in Fig. 9.
Comparing with the results of open-loop controller,
both the acceleration and displacement of position and
angular are reduced significantly. The amplitude of the
acceleration aF∗

closed and the angular acceleration αF∗
closed

are no larger than 5 × 10−12, and the amplitude of the
acceleration r F∗

closed and the angular acceleration θ F∗
closed
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Fig. 8 Acceleration and angle acceleration of payload center-of-mass in closed-loop system with PID controller

are no larger than 2.5×10−10. Table 1 shows the mag-
nitude of the acceleration and magnitude of the dis-
placement of the open-loop system and active vibration
isolation system with PID controller at some of the time
point.

From simulation experiment we can see that accel-
eration and displacement at centroid of experimental
load both were obtained with excellent attenuation and
can restrain vibration that is caused by disturbance

force. But PID control belongs to the classic control-
ling method, which is used for MIMO system requiring
adequate decoupling as a precondition. The design of
decoupling controller relies on the accurate measure-
ment of the mass matrix and the stiffness matrix and it
cannot be fully decoupled because of the presence of
system damping. If the system’s damping is great, the
effect of decoupling will be affected to some degree
(Fig. 10).
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Fig. 9 Displacement and angle of payload center-of-mass in closed-loop system with PID controller

Table 1 Vibration isolation effect of parallel active vibration isolation system by PID control

Time (s) Combined acceleration
(mm/s2)

Combined angular
acceleration (rad/s2)

Combined displacement
(mm)

Combined corner (rad)

Open Loop PID control Open Loop PID control Open Loop PID control Open Loop PID control

5 1.34e−5 5.02e−13 1.22e−5 3.47e−13 9.02e−6 1.49e−11 6.71e−6 1.79e−11

10 8.25e−6 4.66e−13 1.04e−5 2.68e−13 1.26e−6 2.76e−11 1.04e−5 2.48e−10

15 1.11e−5 2.79e−13 1.36e−5 1.07e−13 6.71e−6 4.01e−11 3.21e−5 4.07e−10

20 1.02e−5 1.38e−13 1.17e−5 8.28e−14 2.92e−6 5.28e−11 5.44e−6 6.11e−10
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Fig. 10 Driving forces of voice coil actuators

6 H∞ control and simulation

Modern control method is more suitable for MIMO
system control; according to H∞ control method, the
state equation of control system is modern control
method and it is more suitable for MIMO system
control.

⎧
⎨

⎩

ẋ = Ax + B1ω + B2u
z = C1x + D12u
y = C2x + D21ω + D22u

, (68)

where x is the state vector, ω is the disturbance vector,
u is the control vector, z is the reference output vector,
and y is the output vector.

At the initial state, x (0) = O12×1; while for any
interference loop system, it should have the ability to
suppress disturbances, namely

∞∫

0

(
6∑

i=1

ki q
I
i +

6∑

i=1

mi u̇
I
i +

8∑

i=1

ni fi

)
dt <

∞∫

0

ω,

(69)

where ki ≥ 0, mi ≥ 0, i = (1, . . . , 6), and ni >

0 (i = 1, . . . , 8) are weighting factors. Weighting coef-
ficients are ki = 100, mi = 108, and ni = 1.

Evaluation signal is defined as

z = C1x + D12u. (70)
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Here,

C1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎝

√
k1

. . . √
k6

⎞

⎟⎟⎠

6×6 ⎛

⎜⎜⎝

√
m1

. . . √
m6

⎞

⎟⎟⎠

6×6⎛

⎜⎜⎝

0
. . .

0

⎞

⎟⎟⎠

8×6

⎛

⎜⎜⎝

0
. . .

0

⎞

⎟⎟⎠

8×6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

20×12

,(71)

D12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎝

0
. . .

0

⎞

⎟⎟⎠

12×8⎛

⎜⎜⎝

√
n1

. . . √
n8

⎞

⎟⎟⎠

8×8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

20×8

. (72)

Thus,

‖z‖2 < ‖ω‖2 . (73)

For the existing status feedback u = −K x , which
can make the control system stable, the necessary and

sufficient condition of ‖z‖2 < ‖ω‖2 is the Riccati equa-
tion.

AT P + P A + P
(

B1 BT
1 − B2 BT

2

)
+ CT

1 C1 = 0.

(74)

There is semi-definite solution (P ≥ 0) that can
make A + (

B1 BT
1 − B2 BT

2

)
P stable. If we find the

positive definite solution P of the Riccati equation, the
feedback matrix is

K = BT
2 P, (75)

Control block diagram is shown as Fig. 11, it also
includes open-loop system and the closed-loop system
with a feedback controller. The input of open-loop sys-
tem is disturbance and the voice coil motors are turned
off in this situation. The inputs of closed-loop system
are disturbance force and the driving force of the feed-
back control as shown in Fig. 12.

We can get acceleration and angular of centroid of
open-loop system as shown in Fig. 13, and displace-
ment and angle as shown in Fig. 14. The amplitude
of the acceleration aF∗

open and the angular acceleration

αF∗
open will not exceed 5 × 10−5. The amplitude of the

acceleration r F∗
open and the angular acceleration θ F∗

open

will not exceed 1 × 10−5.
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Fig. 12 Disturbance forces

We can get acceleration and angular of centroid
of closed-loop system as shown in Fig. 15, and
displacement and angle as shown in Fig. 16. The
amplitude of the acceleration aF∗

closed and the angu-
lar acceleration αF∗

closed will not exceed 4 × 10−12.
The amplitude of the acceleration r F∗

closed and the
angular acceleration θ F∗

closed will not exceed
2 × 10−11.

The acting forces of eight voice coil motors are
shown in Fig. 17, the maximum output of which is no
larger than 2 × 104N.
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Fig. 13 Acceleration and angle acceleration of payload center-of-mass in open-loop system under disturbance forces
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Fig. 14 Displacement and angle of payload center-of-mass in open-loop system under disturbance forces
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Fig. 15 Acceleration and angle acceleration of payload center-of-mass in closed-loop system with H∞ controller

123



www.manaraa.com

1750 J. Liu et al.

0

0.2

0.4

0.6

0.8

1

1.2
x 10-9

D
is

pl
ac

em
en

t(
m

m
)

x
y
z

2 4 6                 8 10

Time(sec)

-12

-10

-8

-6

-4

-2

0

2
x 10-10

A
ng

le
(r

ad
)

x
y
z

0 2  4 6 8 10 

Time(sec)

Fig. 16 Displacement and angle of payload center-of-mass in closed-loop system with H∞ controller

Fig. 17 Driving forces of voice coil actuators

The effectiveness of the proposed active damping
system with H∞ control law is listed in Table 2,
which shows the amplitudes of acceleration and dis-
placement of both open-loop and closed-loop with
H∞ control law. The above results demonstrate that
the proposed system with H∞ control law is effec-
tive for isolation application by attenuating the vibra-
tion and it is even better than that with the PID con-
troller aforementioned. We will perform an experimen-

tal study on the fabricated prototype in the next step of
work [18].

7 Conclusion

The proposed active vibration isolation prototype is a
typical MIMO system utilizing eight voice coil motors
as the single-axis isolation to attenuate the acceleration
and displacement of science research platform during
disturbances. In this paper, the system’s characteris-
tics are analyzed and the state-space equations of the
system are also obtained. Then, the controllability and
observability of the system are analyzed. Moreover,
the classical control method and the modern control
method are used to design a dual feedback controller.
The decoupling method is used to make each channel
of feedback signal independent with each other. Then
for each channel, a PID controller is designed indi-
vidually. With the modern control method, H∞control
law is adopted and the feedback matrix is designed
according to state-space equations. From the sim-
ulation results, both PID control and H∞ control

Table 2 Vibration isolation effect of parallel active vibration isolation system by H∞ control

Time(s) Combined acceleration
(mm/s2)

Combined angular
acceleration (rad/s2)

Combined
displacement (mm)

Combined corner (rad)

Open loop H∞ control Open loop H∞ control Open loop H∞ control Open loop H∞ control

5 9.79e−6 2.03e−12 1.61e−5 2.20e−12 4.56e−6 6.20e−12 7.08e−6 4.20e−12

10 1.27e−5 1.54e−12 6.83e−6 1.67e−12 2.49e−6 1.26e−11 3.60e−6 6.25e−12

15 2.24e−5 2.44e−12 2.24e−5 2.52e−12 3.97e−6 1.94e−11 1.94e−6 1.94e−11

20 1.16e−5 1.69e−12 2.40e−6 1.43e−12 4.84e−6 3.23e−11 6.92e−6 2.26e−11
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laws are effective for attenuating the acceleration and
displacement.
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